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Abstract—Resource scheduling in OFDMA cellular wireless
networks is a powerful technique on the MAC layer. Utilizing
adaptive modulation and coding allows the effective use of all
signal-to-interference ratio (SINR) ranges. Typical single antenna
spectral efficiency values for LTE-Advanced range between 4.8
near the base station and 0.2 b/s/Hz at the cell edge. With best-
effort traffic and full buffer assumption the tradeoff between
emphasizing the cell center or cell edge can be explored exten-
sively. However, with real-time traffic present, this takes priority
without fairness adjustment alternatives. In this paper the mixed
traffic scenario is studied with an abstract stochastic Petri net
model. The exploration of the degrees of freedom by studying the
real-time traffic proportion and a fairness adjustment parame-
ter provides new insight to the potential feasible region. The
results show that the tradeoff between emphasizing the cell edge
performance and maintaining a high average spectral efficiency
is most powerful in the best-effort case, while an increasing
level of real-time traffic reduces the room for a tradeoff. The
stochastic Petri net analysis approach allows numeric analysis
without simulation by utilizing Markov chain equivalence and
steady state calculations. This model is deliberately abstract but
flexible enough to study the tradeoff.

Index Terms—cellular; traffic mix; real-time traffic; fairness;
stochastic Petri nets; spectral efficiency

I. I NTRODUCTION

T HE traffic mix in wireless networks makes a difference
between pure physical layer (PHY) and medium access

control (MAC) layer analysis. In PHY, features like adaptive
modulation and coding (AMC) on all subchannels of OFDMA
can adapt to variations of the SINR. This translates into a
variation of local spectral efficiencyγ in the range of0.2
to 4.8 b/s/Hz (LTE-A) from the cell edge to the center.
Figure 1(a) shows the typical AMC modes of LTE-Advanced,
their performance and the upper bounded given by the Shan-
non capacity. Figure 1(b) shows the probability of each AMC
mode in the Urban Macro (UMa) cellular scenario (as defined
by IMT-Advanced evaluation guidelines [1]). Numbers have
been obtained using numeric analysis [2] for sufficiently many
location points in the coverage area.

Previous work using the same approach has studied resource
scheduling in a cell for non-realtime traffic (NRT) only [3].
In this study the different resource scheduling goals were
analyzed, expecially the tradeoff between high spectral effi-
ciency averaged over the whole cell area (γ̄) and the cell edge
performanceγCE , using a parameter to adjust between Max-
SINR (MS) and generalized proportional fair (GPF) schedul-

ing. This tradeoff is only valid for non-realtime traffic (NRT),
e.g., best-effort (BE), because of its elasticity and reasonably
acceptable assumption of full buffers. With additional real-
time traffic (RT), those RT packets have to be delivered while
maintaining the ingress rate, or extensive packet loss (overly
delayed packets) would occur. In this paper, a traffic mix of
RT ant BE traffic is studied, and the potential tradeoffs and
fairness implications are explored.

This paper contributes an abstract simulation-free and tool-
supported model based on stochastic Petri nets (SPN), in
contrast to traditional evaluation methods that require sim-
ulation and detailed scheduler implementations. Due to the
equivalence of Markov chains and SPN state space, a numeric
analysis can calculate steady state probabilities and easily
obtain reward measures. The traffic mix (RT to NRT) is
determined by a parameterr and a tuning parameters in this
model allows to explore the tradeoff betweenγ̄, γCE and
fairnessJ (either for rate or resources).

The advantage of Petri nets [4] is the abstract yet powerful
way for modeling using a graphical structure that unfolds into
a Markov chain (MC) of arbitrary connectivity and complexity
with a few graph elements. Generalized SPN (GSPN) [5] is
a useful tool, because results are obtained by matrix numeric
tools without any simulation. GSPN analysis is well supported
by tools [6]. GSPN have been used in the recent years to model
communications systems [7], [8] and protocols [9]. Resource
management in cellular wireless systems [10], multihop (relay)
transmissions [11] and IEEE 802.16 [12] have also been
studied using the SPN approach. The wireless channel can be
modeled with SPN [11]. Even TCP models [13] and Credit-
Based Flow Control [14] can be integrated. Nobody has come
up with an abstract SPN model like in this paper, hence the
novelty is the SPN modeling itself.

The paper is organized as follows: Section II describes the
radio cell model with multi-class traffic and the fairness versus
rate objective. The last section III shows performance results
for spectral efficiency and fairness.

II. A N SPN MODEL FOR RESOURCE SCHEDULING OF

RT+NRT TRAFFIC

For an introduction into stochastic Petri nets, [4] and [5]
are highly recommended. Due to space limitations we cannot
introduce SPN here. Figure 2 shows the SPN model for a



2

−10 −5 0 5 10 15 20
0

1

2

3

4

5

6

SINR [dB]

M
I [

bi
t/s

/H
z]

 

 
Shannon
QAM64−0.801
QAM64−0.716
QAM64−0.643
QAM64−0.540
QAM64−0.415
QAM16−0.578
QAM16−0.434
QAM16−0.332
QPSK−0.528
QPSK−0.391
QPSK−0.275
QPSK−0.168
QPSK−0.105

(a) Adaptive Modulation and Coding (AMC) performance.(b) LTE-A AMC probabilityπi in unconstrained UMa scenario.

Fig. 1. The underlying system model is completely described bythe probabilityπi of each AMC mode. The values have been obtained by a previous
LTE-Advanced simulations with19 cells, UMa scenario, wraparound, including shadowing, fading, dual path loss, and100 drops of random placement of
10 UTs per sector [1]. These baseline results were obtained using a proportional fair resource scheduler without traffic classes.

traffic mix of RT and NRT traffic. It extends a previous work
in [15], which treated NRT traffic only. The places P## model
the user terminal (UT) selection of the scheduler: A token
in one of these places represents a UT where this AMC
mode index ## has been selected.P00 represents a temporary
outage, i.e., no available AMC mode. According to Figure 1(a)
this is a translation from the SINR distribution. In Figure 2
the AMC(UT) selection is modeled by probabilistic weightswi

on the transitionsAMC00 to AMC13. In an unconstrained
operation, the weights are simply defined aswi = πi, the
known occurrence from Figure 1(b) and representative for a
resource fair situation. These probabilitiesπi were obtained
before by simulation [1] in the UMa IMT-A scenario with re-
alistic conditions, including interference, shadowing [3] and a
proportional fair scheduler. The timing behavior is determined
by transitionT imer, and the rest of the SPN is constructed
to conserve (limit) the token count in a loop, so that the PN
is bounded, live and the Markov chain has a limited number
of states. This model abstracts from (a limited integer count
of) individual users but instead the model corresponds to a
continuous user density (∞ users) in the cell area. The model
also represents the full buffer situation (all UTs have packets
available to send) and all OFDMA resource blocks (RBs) are
in use. No individual RBs are modeled (time averaged).

The weights for the NRT scheduling selection withAMC##
in Figure 2 are adjustable by a parameter, so that the different
goals can be traded off. In a Proportional Fair scheduler the
temporary dynamic priority of a connectioni is given by

Pi =
γh
i

Hi

, (1)

where γi is the currently assumed AMC(i) andHi is the
historical average rate of UTi. The weightswi in the SPN
are now defined as:

wBE

i = πi · γh

i . (2)

It has been shown that the exponential emphasis by parameter
h ∈ [−2; 2] can scale between different fairness objec-
tives [15]. Withh the UT selection can be biased proportional
to γAMC (h = 1), independent ofγAMC (h = 0), or inversely

Fig. 2. Stochastic Petri Nets of the analyzed UMa scenario inthe multi-
traffic scenario (RT and NRT). The places P## model the UT selection of the
scheduler, more precisely an arbitrary UT out of the cell areafraction where
the average AMC mode index is ##. The AMC## transitions schedule NRT
and AMC##RT schedule RT traffic.
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Fig. 3. Resource fairnessJS versusγ̄ in b/s/Hz.

proportional toγAMC (h = −1). More extreme emphasis is
possible by any real|h| > 1 or ∝ √

γ by h = 1

2
. h = 1 gives

preference to UTs with highγ, so γ̄ is expected to be high at
the expense ofγCE and fairness performance.h = −1 gives
more resources to cell edge UTs, thereforeγ̄ decreases while
γCE is increased. This fairness tradeoff is relevant only for
elastic BE traffic, because RT traffic has to be delivered to the
UT without noticeable loss or delay. This will be visible in
the results.

Figure 2 models the scenario with a variable proportion
r of RT traffic. The proportion is installed by weightsr
and (1 − r) at the transitionsTrt andTnrt. RT transmission
requests (modeled by a token inPrt) are dispatched through
the transitionsAMC00RT to AMC13RT . Their weighted
scheduling differs from BE traffic in Eq. 2 by the fact, that
the rate must be guaranteed. Therefore a resource with weaker
AMC mode γi must be assigned an inversely proportional
number of resources to guarantee the requested rate:

wRT

i = πi · γ−1

i
(3)

Both BE and RT contribute to the consumption of resources in
the different AMC levels. With more RT traffic and its priority
over BE traffic, the influence of the fairness control withh
diminishes. The analysis results in the next section show the
tradeoff and results for̄γ, γCE and a fairness assessment.

Fairness is commonly defined by the Jain’s fairness index:

J(~r) =
(
∑N

i=1
ri)

2

N ·∑N

i=1
r2
i

. (4)

It can be used to evaluate scheduling fairness among different
UTs.JR is defined as rate fairness when it compares data rates
ri per AMC region indexi, and as resource fairnessJS when
comparing the number of assigned RB resourcesRi.

III. PERFORMANCEANALYSIS

Using tool support [6] for generating the Markov chains and
the stationary state probabilities, parameterized experiments

Fig. 4. Rate fairnessJR versusγ̄ in b/s/Hz.

can be run and analyzed. The reward measures are obtained
from the token distributionpi:

γ̄ =

13∑

i=0

pi · γi, γCE = Pr(#P01) · γ01. (5)

A fairness metric is obtained separately for rate (Eq. 6) and
resources (Eq. 7). It is normalized taking the probabilityπi

in each AMC modei into account. With homogeneous UT
densitypi · π−1

i
equals one for a fair assignment.

JR =
(
∑

13

i=1
pi · π−1

i
· γi)2

13 ·
∑

13

i=1
(pi · π−1

i
· γi)2

, (6)

JS =
(
∑

13

i=1
(pi · π−1

i
))2

13 ·∑13

i=1
(pi · π−1

i
)2
. (7)

The analysis of the SPN in Figure 2 provides detailed
numeric results (at the end of this paper in Figure 7). Without
scheduler tuning and BE traffic only, the reference values
are γ̄ = 1.58 b/s/Hz, γCE = 0.0094 b/s/Hz, JR = 0.680
andJS = 1.0 (a resource=proportional fair assignment). The
parameter analysis now varies the RT traffic proportionr and
for the remaining(1 − r) · 100% BE traffic, h is adjusted to
explore the tradeoff. As result of this analysis, the impacton
the two fairness metricsJR and JS and spectral efficiencies
γ̄ andγCE are obtained as a function of the two parameters
r andh.

With BE traffic only (r = 0) the results in Fig. 7(a) show
that h can be used to adjust the cell spectral efficiencyγ̄ at
the expense of the cell edge performanceγCE in Fig. 7(c).
The same insight can be seen in Fig. 7(b) and 7(d) on the
left margin (r = 0). The other extreme is withr = 1 (only
RT traffic). In this case there is no tradeoff possible and
both γ̄ and γCE stay constant (can be seen in Fig. 7(a) to
Fig. 7(d)). Interestingly, whenr is gradually increased, as
shown in Fig. 7(b) and 7(d), the reduction inγ̄ and increase in
γCE happen linearly inr. In the same direction of increasingr
the rate fairnessJR approaches its maximum and the resource
fairnessJS reduces to0.45. Note thatJS has been perfect
1.0 for the reference case (proportional fair for BE,h = 0).
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Fig. 5. Tradeoff between average spectral efficiencyγ̄ (x-axis, in b/s/Hz)
and cell edge performanceγCE (b/s/Hz) for an increasing proportion of RT
traffic (r). At r = 1 there is no more flexibility, therefore one point (X) only.

Obviously the degree of freedom withh shrinks with more and
more RT traffic. Rate fairnessJR in Fig. 7(e) is optimum for
h = −1, which means basically the same scheduling treatment
for BE as for RT traffic. Resource fairnessJS in Fig. 7(f) is
optimum for h = 0 and r = 0, i.e., only achievable with
BE traffic due to its elasticity. A small proportion of RT
traffic (r = 0.2) does not change much, but full RT load
is bad for resource fairness, however good for rate fairness
(Fig. 7(e), 7(f)).

The fairness objective can be analyzed as a function of
the cell spectral efficiency (with parametersr and h). This
is displayed in Fig. 3 for resource fairness and Fig. 4 for
rate fairness. Clearly the optimum resource fairnessJS is
achievable only forr = 0, whereasr = 1 is a fixed point
(γ̄ = 0.8 b/s/Hz). Rate fairnessJR in Fig. 4 is optimum for
r = 1, but for r < 1 this only works for a specific parameter
of h, preciselyh = −1.

The main result is Fig. 5, because it shows the tradeoff
betweenγ̄ and γCE in one graph. Forr = 0, the balance
between cell spectral efficiency and cell edge performance
can fully be explored byh. This can actually be compared
to other results in the literature [3]. However, the more RT
traffic is accepted, the less flexibility is available. Forr → 1,
the parametric plot converges to a fixed point atγ̄ = 0.8 and
γCE = 0.04 (marked with×).

Figure 6 shows the possible achievable rates (normalized to
1 Hz bandwidth) for NRT and RT, if mixed between0% and
100% (implicit parameterr). The area below the lines is the
schedulable region. The maximum NRT throughput depends
on the parameterh which trades off cell edge and average
spectral efficiency. Withh = 2, NRT performance comes with
an extremely unfair cell center preference over the cell edge.

The results also show that the abstract SPN model is
powerful enough to provide performance estimates for real
systems, which otherwise have to be modeled and analyzed by
extensive simulation studies. Note that this level of abstraction
allows understanding the root cause for the tradeoffs discussed
here but it cannot model details of finite #RBs, finite #UTs
and fading in time and frequency.

Fig. 6. Schedulable region with NRT and RT traffic. The spectral efficiency
values along the axes denote the potential capacity (b/s/Hz) of the corre-
sponding traffic class, if mixed between0% and100% ratio. The parameter
h adjusts the fairness target for NRT traffic.

IV. CONCLUSION

This paper treats the potential degree of freedom by a
scheduling tradeoff between average cell spectral efficiency,
cell edge performance and fairness in cellular networks with a
traffic mix of realtime (RT) and non-realtime (NRT) traffic.
The system is abstractly modeled as a stochastic Petri net
(SPN) which incorporates a parameter that models the tuning
parameter of a real scheduler. Results were obtained by
Markov chain steady state analysis, not by simulation. The
numbers show that a tradeoff is possible only for NRT traffic,
but with increasing proportion of RT traffic, this flexibility
shrinks down to zero. Also, spectral efficiency results must
be assumed much lower, the more RT traffic is present. The
transport of RT traffic must guarantee the equality of ingress
and egress rate, therefore the cell spectral efficiency is lower
for RT than for NRT traffic with (resource) proportional
fairness. The contributed SPN model allows abstract and
fast performance studies without the need of simulations.
Thus this novel approach is the main contribution of this
paper. Future work can include more classes and a variety of
more schedulers. Adding active fading by channel variation
models [11] in another potential extension.

REFERENCES

[1] ITU, ”Report ITU-R M2135-1; Guidelines for evaluation of radio
interference technologies for IMT-Adcanced”, 2009.

[2] M. M ühleisen, D. B̈ultmann, and R. Schoenen, “Analytical Validation
of an IMT-Advanced Compliant LTE System Level Simulator,” in
Proceedings of the European Wireless, Vienna, Apr 2011.

[3] A. B. Sediq, R. Schoenen, H. Yanikomeroglu, G. Senarath, and Z. Chao,
“A novel distributed inter-cell interference coordination scheme based on
projected subgradient and network flow optimizations,” inPIMRC’2011,
Toronto, Canada, Sep 2011.

[4] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–581, April 1989.

[5] M. Marsan,Modelling with generalized stochastic Petri nets. Wiley,
1996, ISBN 0-471-93059-8.

[6] R. German, “A toolkit for evaluating non-markovian stochastic Petri
nets,” Performance Evaluation, vol. 24, pp. 69–87, 1995.

[7] J. Billington et al., Application of Petri Nets to Communication Net-
works. Springer, 1999, ISBN 3-540-65870-X.



5
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